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The theory of particle association in flexible chains in dilute ferrofluids is generalized to the case of an
arbitrarily strengthened magnetic field. The chain distribution in dynamic equilibrium is obtained on the basis
of free energy minimization method under the neglect of interchain interaction. The chain partition function is
calculated analytically with the help of the rotation matrix technique under the condition when the interparticle
dipole-dipole interaction between the nearest neighboring ferroparticles in each chain is taken into account. At
weak fields, the chain distribution and the initial susceptibility are shown to be dependent on the value of the
correlation coefficient describing the zero field mutual orientational correlations between the magnetic mo-
ments of two neighboring ferroparticles in a chain. The internal chain orientational correlations and the field
dependent chain lengthening result in higher magnetization of the aggregated ferrofluid in comparison with the
Langevin magnetization.
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I. INTRODUCTION

Magnetic fluids (ferrofluids, ferrocolloids) are suspen-
sions of magnetic nanosized particles(Fe oxides, Co, Ni,
etc.) covered by a solvent layer. The magnetic particles gen-
erally are approximately 10 nm in diameter. The ferro- or
ferrimagnetic particles of such a size are single domain. So,
each particle has its own magnetic momentm, the value of
which is proportional to the magnetic core volume and de-
pends upon the saturation magnetization of the material. So,
particles are not only involved in Brownian motion, but also
interact with each other forming different aggregates. The
rheological, hydrodynamic, diffusional, magnetic, and opti-
cal properties of a ferrofluid change by a hundred times un-
der an applied magnetic field of moderate strength. So, such
material is a challenging subject for scientific research as
well as for different applications.

Recent computer simulations[1,2] have shown the micro-
scopic structure of dipolar model fluids to be much more
complex than previously expected. The system at a high di-
polar strength and low volume fraction has proved to asso-
ciate in chain aggregates, the number and length of which
represent increasing functions of the ferroparticle concentra-
tion and of the strength of an external magnetic field. It is
well known that magnetic fluids become optically aniso-
tropic [3] and demonstrate an abrupt viscosity increase[4]
when subjected to a magnetic field. The explanation of these
phenomena is usually made in terms of chain aggregates. A
lot of experimental studies, demonstrating not only chainlike
aggregate existence but also their great influence upon diffu-
sional and hydrodynamic properties of ferrofluids, are worth
mentioning(see, for example,[5] ).

The physical reason for the chain aggregate formation in
ferrofluids is the pair interparticle magnetic dipole-dipole in-
teractionUdsi j d:

Udsi j d = − F3
smi · r i jdsm j · r i jd

r ij
5 −

smi ·m jd
r ij

3 G, r i j = r i − r j .

s1d

The latter is of noncentral character, since it depends not
only on the distancer ij between theith andj th ferroparticles,
but also on the mutual orientation of their magnetic moments
mi and m j. Hence, chain aggregates composed of ferropar-
ticles the magnetic moments of which are in the most favor-
able energetic “head-to-tail” position prove to be typical for
magnetic fluids. Naturally, these microstructures may be
formed only by rather large ferroparticles, intensively inter-
acting magnetically which each other. As a measure of such
interaction the magnetic dipolar coupling constantl
=m2/d3kBT is usually used. This parameter represents the
relation between the magnetic interaction energy of two con-
tacting ferroparticlesm2/d3 and the thermal energykBT (here
d is the particle diameter taking account of the surface non-
magnetic and sterical layers). For real commercial ferrofluids
the mean value of the dipolar coupling constant does not
exceed unity. But a certain number of large sized particles
(with diameters,15–18 nm) always exists due to ferrofluid
polydispersity. The dipolar coupling constant for these par-
ticles may reach values ofl,3–5, which is rather high for
establishing an interparticle “head-to-tail” bond. The micro-
structure of ferrofluids with the dipolar constant varied in
this region was studied by means of molecular dynamics
simulation[2]. According to these papers at low concentra-
tion the chain formation tends to increase the magnetization
and induces a larger initial susceptibility. At high densities,
the particle spatial distribution starts to homogenize again,
and the significance of the chains goes down. This is due to
the fact that in dense ferrofluids the interparticle interaction
results in chain disintegration. The main conclusion of these
papers was that the chain aggregates are most conspicuous in
diluted ferrofluids, while dense ferrofluids are characterized
by a homogeneous fluid like structure.

The computer simulations and experimental observations
were accompanied by theoretical studies of the chain forma-*Electronic address: Alexey.Ivanov@usu.ru
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tion process[6–10]. Two approaches for the chain aggregate
description were proposed. The first one used the so-called
dynamic method [6], where the particle combination/
recombination processes in chains are treated as reversible
chemical reactions. With the demand for dynamic equilib-
rium, the chain distribution as well as other important prop-
erties of the system could be obtained. The second com-
monly used approach is based on the minimization of the
free energy as a functional of the chain distribution density
[8–10]. So this method is called the density functional ap-
proach. The equivalence of these methods is an evident con-
sequence of thermodynamic fundamentals. According to
these works, a considerable fraction of ferroparticles at low
densities and intensive magnetic dipole interaction is con-
nected in chains, the mean length of which appears to be an
increasing function of ferroparticle concentration. This ap-
proach was also extended to the case of polydisperse ferro-
fluids [11].

The general peculiarity of the models[9–11] is that only
two limiting cases are studied: they are the zero field and the
saturation conditions. However, the physical model of the
ferrofluid chain aggregate microstructure is usually used for
description of various properties induced by a magnetic field
of moderate strength. Naturally, an external magnetic field
stimulates chain formation. Unfortunately, no theoretical
model properly describing the magnetic field influence upon
the chain formation process has been built yet. The field
orientation of stiff rodlike chain aggregates is the only
known approach to take the magnetic field influence into
account[8]. The rejection of chain flexibility results in the
Langevin orientational law for each rodlike chain and leads
to a great overestimation of the chain response to an external
field. Therefore, the rigid rodlike chain approach should be
considered only as a qualitative assumption, which is ap-
proximately valid for particles with high values of dipolar
coupling constant.

This paper addresses the basic question of the ferrofluid
chain behavior under the influence of an external magnetic
field. In Sec. II the chain distribution is obtained on the basis
of the density functional approach, and the rotation matrix
technique is described. Since the chain distribution is depen-
dent on the value of the chain partition function, its calcula-
tion is the main mathematical problem due to the necessity
of averaging, that is integration, over a large number of the
particle degrees of freedom. So, the averaging over the po-
sitions of particles(Sec. III) leads to some transformation of
the chain partition function. An example given in Appendix
A demonstrates this procedure for the system of dipolar hard
spheres. The weak field asymptote is studied in Sec. IV, and
the initial susceptibility of the aggregated ferrofluid is ob-
tained. The detailed calculations are presented in Appendix
B. Section V (and Appendix C as well) is devoted to the
chain partition function in the presence of a moderate and/or
strong magnetic field. Use of the saddle-point technique al-
lows us to develop an asymptotic approach for analytical
calculation of the chain partition function. The analytical ex-
pression appears to be very accurate in the whole region of
magnetic field strength. The chain structure analysis and
magnetization study are given in Sec. VI. We end with our
conclusion in Sec. VII.

II. FREE ENERGY FUNCTIONAL

Let us consider a monodisperse ferrofluid, consisting of
identical spherical ferroparticles of diameterd, volume v
=pd3/6, and magnetic momentm with volume concentration
w. The particles might be associated in chain aggregates, and
the concentration ofn-particle chains isgn. It is well known
[7] that under the presence of a magnetic field the thermo-
dynamic properties of magnetic media are dependent on their
shapes due to the demagnetization effects. Since we are go-
ing to study the microstructure and the magnetic properties
of ferrofluids as functions of an external field, we choose the
shape of the container with the ferrofluid such that the influ-
ence of the demagnetization field can be neglected. Thus, we
consider the volume of the system in a shape of infinitely
elongated ellipsoid of revolution(the ratio of the minor to
major ellipsoid semiaxis tends to zero) stretched along an
external uniform magnetic fieldH. It is important to stress
that using the infinitely elongated ellipsoidal shape is of ad-
vantage because this is just the case when the demagnetiza-
tion factor is of no consequence and does not need to be
accounted for(the external magnetic field coincides exactly
with the internal one). For more general shapes of the con-
tainer, the demagnetization factor of the system needs to be
taken into account.

To use the energy density functional method the following
assumptions are traditionally adopted:(i) Each chain is as-
sumed to be a single structural element having its own trans-
lational and rotational degrees of freedom;(ii ) structures that
differ from those of chains are ignored;(iii ) only the inter-
action between the nearest neighboring particles in every
chain is taken into account;(iiii ) diluted ferrofluids are stud-
ied sw!1d, which is why an interaction between chains is
not considered. Under these assumptions the free energy vol-
ume densityF is the sum of the following terms: the ideal
paramagnetic gas free energyFm, the free energy of the chain
ideal gas mixture, and the energy of each chain,

F = Fm + kBTo
n=1

`

gnsHdSln
gnsHdv

e
− ln QnsHdD ,

Fm = − kBT
w

v
lnSsinh a

a
D, a =

mH

kBT
. s2d

Here Qn stands for then-particle chain partition function;
anda has the meaning of the Langevin parameter. The final
problem is to find the minimum of the free energy(2) as a
functional of the chain distributiongn under the mass balance
condition

o
n=1

`

ngnsHd =
w

v
, s3d

and the solution should be written in the form

gnsHd = psHdnQnsHd/v, o
n=1

`

npsHdnQnsHd = w, s4d

where the Lagrange multiplierpsHd is to be determined nu-
merically from the last algebraic equation. It is worth men-
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tioning that the application of the model(2)–(4) is limited in
major part by the neglect of interchain interactions. The latter
cannot be linked only to the low density but also to the
magnitude of the dipolar interactions and of the external
field. For high fields and intensive dipolar interactions(l
,10 and higher) one expects the appearance of ordered
chain phases(nematic, columnar), as can be seen, for ex-
ample, in Ref.[12]. Such structures are observed in magne-
torheological suspensions at strong fields. In these suspen-
sions of micrometer sized magnetic particles the dipolar
coupling constant may amount to the valuesl,10–50. So,
to use the model(2)–(4) we restrict our consideration to the
regionl,3–5, which is typical for the coarse grained frac-
tions in real ferrocolloids with nanometer sized ferropar-
ticles. Besides that, we study only low concentration ferrof-
luids as previously noted.

To use the chain distribution(4) one needs to calculate the
chain partition functionQn representing the averaged Gibbs
distribution. In general, under the nearest neighbor condition
the partition function of then-particle chain is

QnsHd =
1

vn−1S a

sinh a
DnE p

i=1

n

dti expS−
Us + Ud + Um

kBT
D ,

Us = o
i=1

n−1

Ussii + 1d, Ud = o
i=1

n−1

Udsii + 1d,

Um = o
i=1

n

Umsid = − o
i=1

n

smi ·Hd, Q1 = 1. s5d

Here dti stands for the differential volume element for the
position and dipole orientation of theith particle in a chain;
the particle volumev plays the part of a normalizing coeffi-
cient; Udsii +1d denotes the magnetic dipole-dipole interac-
tion potential between two nearest neighboring particles in a
chain; as far as the potentialUssii +1d is concerned, it stands
for a central interparticle interaction(steric repulsion, van
der Waals attraction, electrostatic repulsion in ionic stabi-
lized ferrofluids), andUm describes the interaction of all par-
ticles with a magnetic fieldH.

Since consideration is limited to chain aggregates, a most
convenient coordinate system(Fig. 1) is one in which the
position and orientation of theith particle are specified by its
relationship to the previoussi −1dth monomer unit in the
chain. In this case[6], the radius vectorr i−1i connecting the
centers of both particles and the magnetic moment of theith
particle are defined with the help of the rotation matricesRi
andT i:

r i−1i = r iRin, mi = mT in,

Ri = 1cosui cosfi − sin fi sin ui cosfi

cosui sin fi cosfi sin ui sin fi

− sin ui 0 cosui
2 .

T i = 1cosvi coszi − sin zi sin vi coszi

cosvi sin zi coszi sin vi sin zi

− sin vi 0 cosvi
2 . s6d

Eachith coordinate system point of origin is replaced in the
center of thesi −1dth particle, and theOzi axis is directed
along thesi −1dth magnetic moment(Fig. 1). So the orienta-
tion of the latter in theith coordinate system is determined
by the unit vector

n = 10

0

1
2 .

In expressions(6) the vectorr isr i ;ui ;fid connects the cen-
ters of thesi −1dth and ith particles in a chainsi =2, . . . ,nd;
the unit vectorVisvi ;zid determines the direction of theith
magnetic momentsmi =mVid. In terms of a coordinate sys-
tem based on the position and dipole orientation of particle 1,
expression(6) becomes, by successive rotations,

r i−1i = r iT2 ¯ T i−1Rin, mi = mT2 ¯ T in, s7d

and the magnetic field is

H = H1sin j

0

cosj
2 . s8d

With the help of this rotation matrix technique the parti-
tion function Eq.(5) is then

FIG. 1. Flexible chain and coordinate systems. The position and
the dipole orientation of theith particle are specified by its relation-
ship to the previoussi −1dth monomer unit in the chain. The point
of origin of the ith coordinate system is placed at the center of
particle i −1 so that theOzi axis is codirectional to thesi −1dth
magnetic moment.
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QnsHd = S a

sinh a
DnE

0

p sin jdj

2
E p

i=2

n
dr i

v

3E p
i=2

n

dVi expS−
Us + Ud + Um

kBT
D ,

dVi = s4pd−1sin vidvidzi, dr i = r i
2dri sin uiduidfi ,

s9d

where the integrationsdr i anddVi correspond to averaging
over all particle positions and orientations in the chain with
respect to normalization in the space of particle degrees of
freedom, and the integration sinjdj /2 stands for normalized
averaging over all orientations of the flexible chain in a fer-
rofluid volume. This expression for the partition function
was first suggested in Ref.[6]. The peculiar feature of these
coordinate systems is that in each interparticle dipole-dipole
interaction(1) the orientation of theith magnetic moment is
defined by the unit vectorn. On the other hand, the magnetic
part of the interaction energy becomes complicated:

− Um/kBT = ao
i=1

n

Zi , s10d

where the functionsZi are described by the recurring
expressions

Zi = Xi−1 sin vi coszi + Yi−1 sin vi sin zi + Zi−1 cosvi ,

Xi = Xi−1 cosvi coszi + Yi−1 cosvi sin zi − Zi−1 sin vi ,

Yi = − Xi−1 sin zi + Yi−1 coszi, 2 ø i ø n,

X1 = sin j, Y1 = 0, Z1 = cosj, Xi
2 + Yi

2 + Zi
2 = 1.

s11d

The partition function(9) becomes simpler in two limiting
cases: the zero fieldsa=0d and saturationsa→`d condi-
tions. Successive integrations over particle degrees of free-
dom result in the factorization features

Qns0d = q0
n−1, q0 =E dr 2

v
E dV2

3expS−
Uds12d + Uss12d

kBT
D, m1 = mn, s12d

Qns`d = q`
n−1, q` =E dr 2

v
expS−

Uds12d + Uss12d
kBT

D ,

s13d
m1 = m2 = mn.

In an arbitrarily strengthened external field this factoriza-
tion of the partition function is absent, because the interac-
tion between the particle magnetic moments and an external
field leads to interparticle orientational correlations between
all particles in a chain. That is why the problem of chain
structure under the presence of a magnetic field has not been
solved yet.

III. UNCOUPLING OF THE PARTITION FUNCTION

The analysis of expression(9) shows that the integration
over the translationaldr i and orientationaldVi variables
should be uncoupled. In the integrand(9) all the functionsZi
are independent on the anglesui ,fi, and only the dipole-
dipole potentialsUdsi −1id are functions of these angles:

−
Udsi − 1id

kBT
= lS d

ri
D3

fcosvis3 cos2ui − 1d

+ 3 sinvi sin ui cosui cossfi − zidg.

s14d

Since we are interested in the integration of dipole-dipole
potentials, the general transformation

E
0

2p

fsA cosf + B sinfddf =E
0

2p

fsÎA2 + B2 cosfddf

allows us to use the dipole-dipole interaction potential in the
form

−
Udsi − 1id

kBT
= lS d

ri
D3

fcosvis3 cos2ui − 1d

+ 3 sinvi sinui cosui cosfig, s15d

which does not contain the angleszi. This means that the
integrand expf−sUs+Udd /kBTg should be averaged over vari-
ables dr i independently. Since the particle magnetic mo-
ments are correlated in a chain, this integrand has a sharp
maximum of the height exps2ld@1 at the pointr i =d, ui =0,
vi =0. On the basis of the saddle-point technique the follow-
ing transformation approximately holds true:

E dr i

v
expS−

Ussi − 1id + Udsi − 1id
kBT

D
= q` expfascosvi − 1dg, exps2ld @ 1, s16d

where the coefficientsa and q` depend on the dipolar cou-
pling constantl and on the form and intensity of the central
interactionUssi j d. It is worth mentioning that the zero field
partition functionq0 of the ferroparticle doublet should be
determined with the help of parametersa andq`:

q0 = q`E dV1 expfascosv1 − 1dg = q`

1 − exps− 2ad
2a

.

s17d

For example, a=l /2, q`=exps2ld /3l2, q0=exps2ldf1
−exps−ldg /3l3 for dipolar hard spheres(see Appendix A).
After that, the partition function should be written as

Qnsad = q`
n−1S a

sinha
DnE

0

p sinj dj

2 p
i=2

n E dVi

3expfascosvi − 1dgexpsao
j=1

n

Zjd. s18d

The main idea of this uncoupling is the decrease of the
integration variables. In expression(9) the number of these
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variables is equal to 1+5sn−1d, and in expression(18) this
number reduces to 1+2sn−1d.

IV. WEAK FIELD LIMIT

The weak field response of the aggregated ferrofluid is of
great interest since it allows us to calculate the initial mag-
netic susceptibility. For a weak magnetic fieldsa!1d the
partition function(18) should be transformed by using the
Taylor series expansion:

expSao
j=1

n

ZjD < 1 +
a2

2
So

j=1

n

ZjD2

= 1 +
a2

2 o
j=1

n

Zj
2 + a2 o

k, j=1

n

ZkZj , s19d

where the linear ina term vanishes due the symmetry of the
problem. The calculations given in Appendix B show that in
a weak field the partition function depends on the zero field
correlation coefficientK, describing the averaged projection
of one magnetic moment in a ferroparticle doublet onto the
direction of the other:

Qnsa ! 1d = q0
n−1S a

sinha
Dn

3F1 +
a2

6
Sn + 2

K

s1 − Kd2sn − 1 +Kn − nKdDG .

s20d

Using expression(16) in the definition of the correlation
coefficient(B5), we get

K = Lsad ; coth a − 1/a, s21d

whereLsad stands for the Langevin function. It means that
the correlation coefficient reaches the maximum allowable
value, that is unity, in the limit of a highly intensive dipole-
dipole interactionK→1, l@1. The combination

kmnl =În + 2
K

s1 − Kd2sn − 1 +Kn − nKd, s22d

evidently, has the meaning of a dimensionless mean squared
magnetic moment of then-particle chain. For the rigid rod-
like chain sK=1d it is kmnl=n, and the partition function
coincides with that suggested in Ref.[8]:

Qnsa ! 1d = q0
n−1S a

sinh a
DnS1 +

a2n2

6
D

= q0
n−1S a

sinh a
Dnsinhan

an
, an ! 1. s23d

The relationkmnl /n is presented in Fig. 2 as a function of
the correlation coefficientK. This figure shows that the chain
might be considered as a rigid one( kmnl /n,0.9 and higher)
only for rather large values of the correlation coefficient
sK.0.9d. The short chains(doublets and triplets) become
rigid at lower values ofK than long ones do. This is due the

fact that in long chains the part of flexibility is more impor-
tant than in the case of short ones.

The obtained expression for the partition function(20)
allows us to calculate the initial magnetic susceptibilityx of
the aggregated ferrofluid:

x =
m2

kBT
o
n=1

`

gns0dSn + 2
K

s1 − Kd2sn − 1 +Kn − nKdD
= xL

1 + p0K

1 − p0K
,

gns0d =
p0

n

q0v
, p0 =

1 + 2q0w − Î1 + 4q0w

2q0w
, 1, s24d

wherexL=m2w /3vkBT=2lw /p stands for the Langevin sus-
ceptibility, and the Lagrange parameterp0 defines the zero
field chain distributiongns0d. For low concentration ferroflu-
ids sq0w!1d it follows that p0<q0w, g1s0d<w /v, and this
means that the system is nonaggregated. In the region of the
product valuesq0w,1–10 the Lagrange parameterp0 rap-
idly increases to the valuesp0,0.7–0.8, and with the further
increase ofq0w it slowly tends to unity. According to this
behavior ofp0 the concentration dependence of the initial
magnetic susceptibilityx (24) is the following. It linearly
increases according to the Langevin lawsx<xL,wd at very
low concentrations. Then it grows nonlinear. And for rather
large concentrationsp0,0.9–1d the susceptibility also in-
creases linearly inw, but the slope angle is larger than for the
Langevin susceptibilityfx<xLs1+Kd / s1−Kdg. This concen-
tration behavior of the initial susceptibility(24) is demon-
strated in Figs. 3(a) and 3(b) in comparison with the Lange-
vin susceptibilityxL for dipolar coupling constantsl=3 (a)
and 4(b). The result of the rigid rodlike chain model[8] for
the initial susceptibility also follows from the expression
(24) under the condition when the correlation coefficient is
equal to unity:K=1, x=xLs1+p0d / s1−p0d. The last expres-
sion is also presented in Figs. 3(a) and 3(b). The boxes dem-
onstrate the data of the molecular dynamics simulations[13]
for the initial susceptibility of the system of noninteracting
chains. The rejection of internal chain orientational fluctua-
tions in the rigid rodlike chain model[8] leads to a great
overestimation of the initial susceptibility(and magnetiza-

FIG. 2. Dependence of the relative mean squared magnetic mo-
mentkmnl /n of ann-particle chain on the correlation coefficientK.
Figures on the curves stand for the numbern of ferroparticles in the
chain.
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tion as well) in comparison with the present flexible chain
theory and with the computer simulation data. The point is
that the account of the chain flexibility is very important for
proper description of computer and experimental studies of
the magnetic properties of aggregated ferrofluids. And even
for diluted ferrofluids the presence of flexible chain aggre-
gates leads to higher values of the initial magnetic suscepti-
bility as compared with the Langevin one.

V. MODERATE AND STRONG MAGNETIC FIELDS

For the case of an arbitrarily strengthened external field
the evaluation ofQnsHd requires further approximations,
valid as long as exps2ld@1. As shown in Appendix C, an
asymptotic approximation of Eq.(9) yields

Qnsad = q`
n−1Dn−1sadp

j=1

n−1

Cjsad,

Dn−1sad =
a

sinh a

sinhfas1 + aBn−1dg
as1 + aBn−1d

,

Cjsad =
a

sinh a

sinh Aj

Aj
expf− as1 + aBjdg, Aj = af j + a,

Bj = f jLsAjd/Aj ,

f j+1 = 1 +afjLsaf j + ad/saf j + ad, f1 = 1. s25d

Here the recurring coefficientsf j ù1 take into account the
effect of superposed magnetization. It means that each par-
ticle is orientationally influenced by an effective fieldaf i

instead of the external onea. This effective strengthening of
the field, acting on each particle in a chain, is connected with
the mutual orientational correlations due to the influence of
dipole-dipole interactions. The orientational response of one
particle stimulates an additional reaction of the rest, since the
dipole-dipole interaction tends to align the particle magnetic
moments in a chain. In this sense, the recurring coefficients
f j define the effectively acting magnetic field.

The approximate expression(25) is examined with the
help of numerical calculation of then-particle chain partition
function (18) for dipolar hard spheressn=2, . . . ,5d, and the
results are illustrated in Fig. 4 forl=4. The analytical ex-
pression(25) agrees well with the numerical data in the
whole range of dimensionless magnetic fielda; small devia-
tions appear in weak fields. In addition, Fig. 4 demonstrates
that the longer the chain is, the lower is the field growth rate
of the chain partition function. This evident result is caused
by the fact that in long chains the role of flexibility is more
important than in the case of short ones.

At weak fields, the partition function(25) coincides
with (12):

Qnsa = 0d = Sq`

1 − exps− ad
2a

Dn−1

; q0
n−1. s26d

Moreover, the strong field asymptote of the expression
(25) demonstrates the factorization in the form

Qnsa @ 2ad = fq`/s1 + 2a/adgn−1. s27d

The analysis shows that this saturation asymptote is actu-
ally valid beginning from fieldsa,10.

The described algorithm of the partition function calcula-
tion may be easily extended to the case of polydisperse fer-
rofluids [11], as well as to the account of interparticle inter-
action between all particles in a chain without restriction to
nearest neighbors. The last case will lead to an evident minor
increase of the partition function, and this has an insignifi-
cant influence on further results.

VI. CHAIN AGGREGATE STRUCTURE
IN A MAGNETIC FIELD

The combination of the calculated partition function(25)
and general solution(4) allows us to study the chain aggre-

FIG. 3. (a) Concentration dependence of the initial susceptibility
4px (24) (solid curve 2) in comparison with the Langevin suscep-
tibility 4pxL (dotted curve 1) and with the initial susceptibility in
the rigid rodlike chain model(dashed curve 3) for a hard sphere
ferrofluid with l=3; (b) the same dependencies as in(a) for l=4.
The molecular dynamics data[13] are presented by boxes.

FIG. 4. Field dependence of then-particle chain partition func-
tion Qnsad for dipolar hard spheres in comparison with the numeri-
cal calculations(points) for l=4.
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gate structure under the influence of an external magnetic
field of arbitrary strength. The dependence of the chain vol-
ume concentrationvngn on the numbern of particles in a
chain is shown in Fig. 5 for the hard sphere ferrofluid(l
=4, w=0.05); the curves correspond to different values of the
dimensionless magnetic fielda. Naturally, field strengthen-
ing results in a shift of the chain distribution to the region of
longer chains, and it means that the system considered be-
comes more aggregated. Such an influence is confirmed by
the field dependence of the mean chain lengthknl, which is
demonstrated in Fig. 6 for a diluted hard sphere ferrofluid
with concentrationw=0.05. The mean chain lengthening is
very intensive in the region of moderate magnetic fieldsa
,1–4, and further field strengthening is accompanied by a
slow approach of the ferroparticle system to the equilibrium
chain distribution in saturation conditions.

With field growth the chains proved to be more rigid. This
conclusion follows from the field behavior of the correlation
coefficientKsHd, which is defined according to expression
(B5) for nonzero magnetic field. On the basis of the method
described in Appendix C the approximate simple dependence
should be obtained:

KsHd ; Ksad < Lsa + ad, s28d

which coincides with expression(21) for zero magnetic field.
With field growth the correlation coefficient(28) monotoni-
cally increases and asymptotically reaches the maximum
value, which is unity. When the dimensionless magnetic field
is strong enoughsa.10d the correlation coefficient takes
values over 0.9. This means that the particle magnetic mo-
ments in a chain become codirectional, and the chain exhib-

its rigid rodlike behavior in a magnetic field. In other words,
a field strengthening leads to an evident weakening of the
internal chain fluctuations. At first sight this conclusion is
opposite to the theoretical[10] and numerical[14] predic-
tions of globule formation. But in reality the chain-globule
transition is possible only for rather long chains, containing
dozens of ferroparticles. For the considered region of ferrof-
luid parameters( wø0.05, lø5) the presented model pre-
dicts the existence of relatively short chains(see Figs. 5 and
6). The obtained decrease of the flexibility of these short
chains with field strengthening seems to be physically natu-
ral, and this effect does not contradict the globule formation
of long chains[10,14].

The correlated orientational chain response to a magnetic
field is accompanied by an increase of the magnetizationM
as compared with the Langevin magnetizationML of an ideal
paramagnetic gas of single ferroparticles. From the magneti-
zation definition and the free energy volume density(2) it
follows that

MsHd = −
] F

] H
= MsLsad + kBTo

n=1

`

gnsHd
] ln QnsHd

] H

= MLsad +
Ms

w
o
n=2

`

psadn] Qnsad
] a

, s29d

o
n=1

`

npsadnQnsad = w, Ms =
mw

v
,

whereMs stands for saturation magnetization. The term ad-
ditional to ML takes into account the correlated contribution
of all particles, associated in chains. It is worth noting that
expression(29) is valid only for a system of noninteracting
chains, similar to the ideal paramagnetic gas mixture of
chains, the magnetic moments of which fluctuate inside the
chains. But the magnetization of the last system proves to be
higher than the Langevin magnetization due to the internal
chain correlations. An additional influence is also exerted by
chain lengthening in a magnetic field. The relative magneti-
zation differencesM −MLd /Ms for the system of dipolar hard
spheres is presented in Fig. 7 as a function of the Langevin
parametera for various values of dipolar coupling constant
l=3,4,5 andferroparticle volume concentrationw=0.05.

FIG. 5. Volume densityvngn of the n-particle chains in hard
sphere ferrofluids forl=4, w=0.05 and various values of the di-
mensionless magnetic fielda=1,5,10.

FIG. 6. Field dependence of the mean chain lengthknl for a hard
sphere ferrofluid with concentrationw=0.05. Curves 1–3 corre-
spond to dipolar coupling constantsl=3,4,5.

FIG. 7. Magnetization curves of aggregated hard sphere ferrof-
luids with ferroparticle concentrationw=0.05 and dipolar coupling
constantsl=3,4,5 (curves 1–3, respectively). The difference be-
tween the magnetizationM (29) and the Langevin magnetization
ML is presented for clarity.
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The maximal excess lies in the region of moderate fieldsa
,1 and increases with concentrationw. It should be pointed
out that the effect of aggregated ferrofluid magnetization in-
crease was reported in Ref.[2] and was unambiguously ex-
plained by the chain aggregate influence.

For strong magnetic fields the magnetization difference
decreases parabolicallyM −ML,a−2, and it follows from
the asymptotical behavior(27). In other words, the magneti-
zation (29) reaches the saturation valueMs according to the
Langevin lawM =Mss1–1/ad ,a→`. This fact is quite well
substantiated physically, because the rapid growth of the ag-
gregated ferrofluid magnetization in the region of weak and
moderate magnetic fields(Fig. 7) is caused not only by the
internal chain correlations but also by the chain lengthening
(Fig. 6); whereas, in saturation fields the chain lengthening
stops, and the magnetization behavior is determined by the
single ferroparticle orientation only.

VII. CONCLUSION

In conclusion, the problem of equilibrium chain lengthen-
ing, caused by an external magnetic field, is solved analyti-
cally for the case of noninteracting flexible chains in low
concentration magnetic fluid. The flexible chain orientational
response to a magnetic field is shown to be weaker than for
the rigid rodlike chains assumed in Ref.[8]. The last ap-
proximation holds true only for very high values of the
dipole-dipole coupling constant.

Even for flexible chains, the obtained results demonstrate
the great influence of the chain aggregates on the magneto-
static properties of ferrofluids due to orientational correla-
tions between the magnetic moments of ferroparticles inside
a chain. The amount of chain flexibility decreases with field
strengthening, and in strong fields the chain aggregate re-
sembles a stiff rodlike chain. Due to the existence and
lengthening of chains, the magnetization and initial suscep-
tibility of the aggregated ferrofluid turn out to be higher than
those for a colloidal suspension of single ferroparticles. This
conclusion is proved by the computer simulation data re-
ported in Ref.[2]. At the same time, in computer simulations
this effect was much more pronounced than is shown in Figs.
3 and 7. Apparently, it is caused by the interchain interac-
tions, and the model should be extended to account for these
interactions. Unfortunately, this makes it impossible to carry
out an exact quantitative comparison at this time.
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APPENDIX A

As an example of the transformation(16) let us study the
dipolar hard sphere system. So the central interparticle inter-

actionUssi j d is the hard sphere potentialUHSsi j d of repulsion
between particles of equal diameterd. Since the integrand in
the partition function(9) has a sharp maximum of the height
exps2ld@1 at the pointr i =d, ui =0, vi =0, a significant con-
tribution should be found using the saddle-point technique.
The expansion of the dipole-dipole potential(15) into Taylor
series up to the second order terms givesfr i

3=d3s1+xid ,xi

!1,ui !1,vi !1g

− Udsi − 1id/kBT = ls2 – 2xi − vi
2 − 3ui

2 + 3viui cosfid.

sA1d

Using the expanded dipole-dipole potential(A1) in the
integrand(16), we get within the limits of the considered
accuracy

E dr i

v
expF−

UHSsi − 1id + Udsi − 1id
kBT

G
=

2

p
E

0

`

uiduiE
0

2p

dfiE
0

`

dxi

3expfls2 – 2xi − vi
2 − 3ui

2 + 3viui cosfidg

= 2
exps2ld

l
exps− lvi

2dE
0

`

uidui exps− 3luidI0s3luivid

= exps− lvi
2/4dexps2ld/s3l2d

= expflscosvi − 1d/2gexps2ld/s3l2d. sA2d

Here we use the integrals

E
0

2p

expsA cosfddf = 2pI0sAd,

E
0

`

exps− Bu2dI0sCudu du = expsC2/4Bd/2B,

where I0szd is the zero order modified Bessel function. The
comparison of expressions(16) and (A2) allows us to write
down (for the dipolar hard sphere fluid)

q` = exps2ld/s3l2d, a = l/2. sA3d

For the zero field partition function of the hard sphere
ferroparticle doublet we get then

q0 =
exps2ld

3l2 E dVi expflscosvi − 1d/2g

=
exps2ld

3l3 f1 − exps− ldg. sA4d

The last expression coincides with the well known asymp-
tote q0=exps2ld / s3l3d [7] for high values of the dipolar
coupling constantl@1.

APPENDIX B

Substitution of the weak field asymptote(19) allows us to
integrate the partition function(9) over the angleszi and j.
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All diagonal elementsZj
2 give the same contribution:

E
0

p sinj dj

2
Z1

2 =E
0

p sinj dj

2
cos2 j =

1

3
,

E
0

p sinj dj

2
E

0

2p dz2

2p
Z2

2 =E
0

p sinj dj

4
fsin2 v2

+ s3 cos2 v2 − 1dZ1
2g

=
1

3
,

E
0

p sinj dj

2
E

0

2p

p
i=2

j
dzi

2p
Zj

2 =E
0

p sinj dj

4
E

0

2p

p
i=2

j−1
dzi

2p

3 fsin2 v j + s3 cos2v j − 1dZj−1
2 g

=
1

3
.

In other words,

E
0

p sinj dj

2
E

0

2p

p
i=2

n
dzi

2p
o
j=1

n

Zj
2 =

n

3
. sB1d

Let us consider the cross elementsZkZj ,k, j , in expres-
sion (19):

E
0

p sinj dj

2
E

0

2p

p
i=2

j
dzi

2p
ZkZj

=E
0

p sinj dj

2
E

0

2p

p
i=2

j−1
dzi

2p
ZkZj−1 cosv j

=E
0

p sinj dj

2
E

0

2p

p
i=2

k
dzi

2p
Zk

2 p
m=k+1

j

cosvm

=
1

3 p
m=k+1

j

cosvm.

In all, the averaging of weak field expansion(19) for an
n-particle chain over the angleszi andj gives

E
0

p sinj dj

2
E

0

2p

p
i=2

n
dzi

2p
exps− Um/kBTd

< 1 +
a2

6
Sn + 2 o

k, j=1

n

p
m=k+1

j

cosvmD . sB2d

Then, the weak field behavior of the partition function(9)
is determined by the general formula

Qnsa ! 1d =
1

vn−1S a

sinha
DnE p

i=2

n

dr i

3E
0

p sinvi dvi

2
expS−

Us + Ud

kBT
D

3F1 +
a2

6
Sn + 2 o

k, j=1

n

p
m=k+1

j

cosvmDG , sB3d

where all dipole-dipole potentials are defined by expression
(15). The point is that this general formula is also factorable,
since it represents the combinatorial sum of the independent
items:

Qnsa ! 1d = q0
n−1S a

sinha
DnF1 +

a2

6
Sn + 2 o

k, j=1

n

Kj−kDG
= q0

n−1S a

sinha
DnF1 +

a2

6
Sn + 2

K

s1 − Kd2

3sn − 1 +Kn − nKdDG . sB4d

Here we use the symbolK indicating the zero field corre-
lation coefficient between the orientations of two neighbor-
ing particle magnetic moments in a chain:

K = q0
−1E dr 2

v
E dV2 cosv2 expS−

Uds12d + Uss12d
kBT

D .

sB5d

With the help of expressions(16), (A3), and (A4) for a
dipolar hard sphere fluid we obtain

K = Lsl/2d ; cothsl/2d − 2/l.

APPENDIX C

The combination of expressions(9) and(16) allows us to
write down the chain partition function in the following
form, which is easy to use in the chain structure analysis
under the presence of a strong and moderately strengthened
external field:

Qnsad = q`
n−1S a

sinha
DnE

0

p sinj dj

2

3expsaZ1dp
i=2

n E dVi expsWid,

Wi = − a + a cosvi + aZi . sC1d

Let us successively integrate over the orientations of par-
ticle magnetic moments beginning from the last one. Using
the recurring formulas(11), let us expressWn as

Wn = W̃n = − a + safnZn−1 + adcosvn + afnsXn−1 coszn

+ Yn−1 sin zndsin vn, fn = 1.
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After that, the integralsdVn should be calculated exactly:

Jn =E dVn expsW̃nd = exps− adE
0

p sinvndvn

2

3 expfsafnZn−1 + adcosvngI0safn
ÎXn−1

2 + Yn−1
2 sinvnd

= exps− ad
sinhun

un
,

3un
2 = a2 + safnd2 + 2aafnZn−1. sC2d

In view of the fact that the chain is a correlated object, the
function un has a sharp maximum at the pointZn−1<1. This
allows us to expand

sinhun

un
=

sinhsafn + ad
afn + a

expSaafnLsafn + ad
afn + a

sZn−1 − 1dD .

sC3d

Then

E dVn−1 expsWn−1dJn =
sinhAn

An
expf− as1 + aBndgJn−1,

Jn−1 =E dVn−1 expsW̃n−1d.

W̃n−1 = − a + safn−1Zn−2 + adcosvn−1

+ afn−1sXn−2 coszn−1 + Yn−2 sin zn−1dsin vn−1,

An = afn + a, Bn = fnLsAnd/An,

fn−1 = 1 +afnLsafn + ad/safn + ad, sC4d
where the functionsW̃i differs from Wi [Eq. (C1)] by the
recurring coefficientsf i ù1. The preceding arguments may
now be repeated sequentially with the result

E
0

p sinj dj

2
expsaZ1dp

i=2

n E dVi expsWid

= p
i=2

n
sinhAi

Ai
expf− as1 + aBidgE

0

p sinj dj

2

3expfas1 + aB2dcosjg

=
sinhfas1 + aB2dg

as1 + aB2d p
i=2

n
sinhAi

Ai
expf− as1 + aBidg.

In the last expression the recurring calculation of the co-
efficientsAi ,Bi should be done beginning from the last par-
ticle of the indexn up to the second one. Summation from
the first particle(see Fig. 1) seems to be more convenient. So
the summation indexi is replaced byj =n− i +1 in the final
expression(25) for the n-particle chain partition function.
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